A Multigrid-Preconditioned Newton-Krylov Method for the Incompressible Navier-Stokes Equations
نویسندگان
چکیده
Globalized inexact Newton methods are well suited for solving large-scale systems of nonlinear equations. When combined with a Krylov iterative method, an explicit Jacobian is never needed, and the resulting matrix-free Newton–Krylov method greatly simplifies application of the method to complex problems. Despite asymptotically superlinear rates of convergence, the overall efficiency of a Newton–Krylov solver is determined by the preconditioner. High-quality preconditioners can be constructed from methods that incorporate problem-specific information, and for the incompressible Navier–Stokes equations, classical pressure-correction methods such as SIMPLE and SIMPLER fulfill this requirement. A preconditioner is constructed by using these pressurecorrection methods as smoothers in a linear multigrid procedure. The effectiveness of the resulting Newton–Krylov-multigrid method is demonstrated on benchmark incompressible flow problems.
منابع مشابه
Solution of the Incompressible Navier-Stokes Equations in General Coordinates by Krylov Subspace and Multigrid Methods
In this paper three iterative methods are studied: preconditioned GMRES with ILU preconditioning, GMRESR with multigrid as inner loop and multigrid for the solution of the incompressible Navier-Stokes equations in general coordinates. Robustness and e ciency of the three methods are investigated and compared. Numerical results show that the second method is very promising.
متن کاملKrylov Subspace and Multigrid Methods Applied to the Incompressible Navier-stokes Equations
We consider numerical solution methods for the incompressible Navier-Stokes equations discretized by a nite volume method on staggered grids in general coordinates. We use Krylov subspace and multigrid methods as well as their combinations. Numerical experiments are carried out on a scalar and a vector computer. Robustness and eeciency of these methods are studied. It appears that good methods ...
متن کاملAn accurate and efficient method for the incompressible Navier-Stokes equations using the projection method as a preconditioner
The projection method is a widely used fractional-step algorithm for solving the incompressible Navier–Stokes equations. Despite numerous improvements to the methodology, however, imposing physical boundary conditions with projection-based fluid solvers remains difficult, and obtaining high-order accuracy may not be possible for some choices of boundary conditions. In this work, we present an u...
متن کاملMultigrid algorithms for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations
Multigrid algorithms are developed for systems arising from high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations on unstructured meshes. The algorithms are based on coupling both pand h-multigrid (ph-multigrid) methods which are used in non-linear or linear forms, and either directly as solvers or as preconditioners to a Newton-Krylov method. The perform...
متن کاملNewton multigrid least-squares FEM for the V-V-P formulation of the Navier-Stokes equations
We solve the V-V-P, vorticity-velocity-pressure, formulation of the stationary incompressible Navier-Stokes equations based on the least-squares finite element method. For the discrete systems, we use a conjugate gradient (CG) solver accelerated with a geometric multigrid preconditioner for the complete system. In addition, we employ a Krylov space smoother inside of the multigrid which allows ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 23 شماره
صفحات -
تاریخ انتشار 2001